

Tetrahedron Letters 44 (2003) 7849-7850

Corrigendum

Corrigendum to "A parallel combinatorial approach to locating homochiral Lewis acid catalysts for the asymmetric aza-Diels-Alder reaction of an imino dienophile"

[Tetrahedron Lett. 39 (1998) 8905][★]

Abas Bundu, Stéphane Guillarme, John Hannan, Hayley Wan and Andrew Whiting*

Department of Chemistry, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, UK

Unreproducibilty of the reported results

In 1998, we published¹ a paper in *Tetrahedron Letters* entitled 'A parallel combinatorial approach to locating homochiral Lewis acid catalysts for the catalytic asymmetric aza-Diels–Alder reaction of an imino dienophile.' The main findings of this paper were: (1) that Yb(OTf)₃ catalyses the reaction of imine 1 with diene 2 (Eq. (1)); (2) that a small scale combinatorial search method was used with a series of Lewis acids, chiral ligands, solvents

and additives to locate new conditions for providing catalytic asymmetric induction in product 3, providing a wide range of claimed levels of asymmetric induction; (3) the best reactions conditions were scaled up and produced the results summarised in Table 1, with the experimental and characterisation for 3 for the highest e.e. reaction, being as reported in the procedure below; and (4) e.e.s had been claimed to be determined by chiral HPLC using a Chiralcel OJ column (hexane:ethanol, 50:50, flow rate 1 ml/min, retention times 10.40 and 14.90 min).

[★] DOI of original article: 10.1016/S0040-4039(98)01947-9

^{*} Corresponding author.

7850 Corrigendum

Table 1. Scaled up reaction conditions and associated e.e.s

Lewis acid	Ligand	Additive	Solvent	Yield ^a (%)	E.e. (%)
MgI_2	6	2,6-Lutidine	MeCN	64	97 ^b
$Yb(OTf)_3$	6	2,6-Lutidine	PhMe	60	87
Cu(OTf) ₂	6	None	MeCN	58	86
FeCl ₃	4	4 Å MS	CH_2Cl_2	67	92

^a All yields unoptimised, after silica gel chromatography.

Procedure: using magnesium(II) iodide and diamine **6**. To a solution of magnesium(II) iodide (29 mg, 0.10 mmol) and (1R,2R)-diphenylethylene diamine 6 (24 mg, 0.11) mmol) in acetonitrile (5 ml) was added 2,6-lutidine (0.01 ml, 0.11 mmol). After 30 min, imine 1 (200 mg, 1.04 mmol) was added in dry acetonitrile (10 ml), followed by diene 2 (0.25 ml, 1.29 mmol) after a further 30 min. The reaction mixture was stirred for 18 h, mixed with silica gel (2 g) and the solvent evaporated. The resulting solid was loaded onto a silica gel column and eluted with petroleum ether:ethyl acetate (1:2) to give enone 3 as a yellow solid (174 mg, 64%); $[\alpha]_D^{23}$ = -2.9 (c 0.1 CHCl₃); v_{max} (film, inter alia) 1740 (ester CO) and 1650 (ketone CO) cm⁻¹; λ_{max} (EtOH) 203 (ε 12,000), 239 (ε 7,520) and 341 (ε 15,100) nm; δ (1 H, CDCl₃, 400 MHz) 2.97 (1H, ddd, J 17, 2 and 1 Hz, CHH), 3.11 (1H, dd, J 17 and 7.5 Hz, CHH), 3.79 and 8.84 (each 3H, s, 2×OCH₃), 4.72 (1H, ddd, J 7.5, 2 and 1 Hz, N.CH.CH₂), 5.24 (1H, dd, J 17.5 and 1 Hz, N.CH:CH), 6.93 and 7.12 (each 2H, d, J 8 Hz, $2\times$ ArCH), 7.43 (1H, dd, J 17.5 and 1 Hz, N.CH:CH); δ (13C, CDCl₃, 100.7 MHz) 38.8 (CH₂), 53.4 (ArOCH₃), 56.0 (CO.OCH₃), 61.7 (N.CH), 102.3 (ArCH), 115.2 (ArCH), 122.3 (N.CH:CH), 138.6 (ArC.N), 150.5 (N.CH:CH), 170.8 (CO.OCH₃), 189.5 (CO.CH₂); m/z(CI, NH₃) 262.3 (M+H⁺, base peak); Anal. C₁₄H₁₅NO₄ requires C, 64.1; H, 5.8; H, 5.3; found C, 64.2; H, 5.7; N, 5.6%.

In the interim since this communication, several workers have struggled to try to reproduce the following results: (1) the e.e.s shown in Table 1, though yields are reproducible. Typical e.e.s have been in the range varying from 0 to 55% using magnesium(II) iodide and ligand 6, seemingly depending on how anhydrous the conditions are. The remaining entries fail to produce any asymmetric induction; (2) the optical rotation of -2.9 in the procedure above, for a material of 98% e.e.,

is incorrect, though the remainder of the characterisation data are correct.

In trying to understand the problems associated with these results, we have found the following: (1) pure racemic cycloadduct 3 has retention times of 34 and 49 min, respectively, for each enantiomer using a Chiralcel OD column (1 ml/min flow rate, IPA:hexane, 1:4); (2) asymmetric procedure reported using the Jørgensen,² which he applied to the ethyl ester version of adduct 3, the corresponding methyl ester cycloadduct 3 can be prepared in 87% e.e. (major peak at 34 min), 72% yield, $[\alpha]_D^{20} = +180$ (c 0.13, CHCl₃). Under identical conditions [CH₂Cl₂, CuClO₄·4MeCN, and (R)-Tol-Binap, but reproducing the Jørgensen ethyl ester reaction, we obtained 66% yield, 83% e.e. [89%] yield and 72% e.e., $[\alpha]_D^{rt} = +181.7$ (c 0.82, CHCl₃) was reported by Jørgensen for the (R)-enantiomer²]. Hence, the major methyl ester enantiomer with the retention time of 34 min is therefore also (R), by correlation with this result.

Acknowledgements

We are grateful to the EPSRC (GR/99315155) for funding (for J.H. and S.G.) and to Professor K. A. Jørgensen and his research group for helpful assistance and information.

References

- Bromidge, S.; Wilson, P. C.; Whiting, A. Tetrahedron Lett. 1998, 39, 8905.
- Yao, S.; Saaby, S.; Hazell, R. G.; Jørgensen, K. A. Chem. Eur. J. 2000, 6, 2435.

^b For procedure and characterisation, see Ref. 1.